

MADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MADANAPALLE
(UGC-AUTONOMOUS INSTITUTION)**MCA I Year I Semester (R24) Supplementary End Semester Examinations, January 2026**
Mathematical Foundations for Computer Applications**Time: 3Hrs****Max Marks: 60**

Attempt all the questions. All parts of the question must be answered in one place only.
In Q.No 1 to 5 answer either A or B only

Q.No	Question	Marks	CO	BL
------	----------	-------	----	----

Q.1(A) Let X denote, the number of holes that for can be drilled per bit. The density for X is given the following table: 12M 1 3

x	1	2	3	4	5	6	7	8
$p(x)$	0.02	0.03	0.05	0.2	0.4	0.2	0.07	$p(8)$

- (i) Find $p(8)$ and Mean of X
- (ii) Find the table for F
- (iii) Use F to find the probability that a randomly selected bit can be used to drill between three and five holes inclusive.
- (iv) Find variance of X

OR

Q.1(B) For the following bivariate probability distribution obtain, 12M 1 3

- (i) marginal distributions of X and Y
- (ii) the conditional distribution of X given $Y=0$
- (iii) the conditional distribution of Y given $X=1$

$X \setminus Y$	0	1	2
0	0.02	0.08	0.18
1	0.15	0.02	0.25
2	0.03	0.12	0.15

Q.2(A) (i) Derive moment generating function of Geometric Distribution 6M 2 3

(ii) The average number of accidents on a certain national highway per day is 8. Assume that the number of accidents on any given day follows a Poisson distribution. Find the probability that on a particular day the number of accidents will be (i) at most 3 (ii) at least 2 6M 2 3

OR

Q.2(B) In a factory, the amount of time (in minutes) it takes to assemble a product is normally distributed with a mean of 12 minutes and a standard deviation of 2 minutes. What is the probability that a randomly selected product takes (i) between 10 and 14 minutes (ii) less than 10 minutes (iii) more than 15 minutes to assemble? 12M 2 4

Q.3(A) Use the basic logic equivalences to show each of the following equivalences. 12M 3 3

(a) $\varphi: (p \vee \neg(p \wedge q)) \equiv T$

(b) $\psi: (\neg(\neg p \rightarrow q) \vee \neg(p \wedge \neg q)) \equiv (\neg p \vee q)$

OR

Q.3(B) Find a CNF equivalent to the formula: 12M 3 3

$\psi: (((A \rightarrow \neg B) \vee (A \leftrightarrow C)) \rightarrow (\neg B \vee C)).$

Q.4(A) Two relations R and S from a set A containing four elements to a set B containing five elements are given in terms of their adjacency matrices: 12M 4 3

$$\text{matrices: } M_R = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}; M_S = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}. \text{ Find the}$$

adjacency matrix of each of the relations $R \cap S$, $R \cup S$, R^{-1} , $\neg R$, S^{-1} and $\neg S$

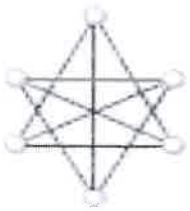
OR

Q.4(B) State pigeon hole principle. 12M 4 3

- There are 235 students in a discrete math class. How many students can be chosen by the professor from the class who are born the same month.
- Prove that among 132 non-negative integers chosen at random, we can choose at least 19 integers that have the same remainder in the division by 7.

Q.5(A) Check whether the following graphs are isomorphic or not. Justify? 12M 5 3

i.



G

H

ii.

G

H

OR

Q.5(B) Explain Hamiltonian circuits and Hamiltonian paths, Chromatic number, Trees, Traversal of trees with suitable examples 12M 5 3

*** END***

MADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MADANAPALLE

(UGC-AUTONOMOUS)

MCA I Year I Semester (R24) Supplementary End Semester Examinations – December 2025

PYTHON PROGRAMMING

Time: 3Hrs

Max Marks: 60

Attempt all the questions. All parts of the question must be answered in one place only.

In Q.no 1 to 5 answer either A or B only

Q.No	Question	Marks	CO	BL
Q.1(A)	Explain the highlighting features of python	12M	1	2
	OR			
Q.1(B)	What is meant by sequence datatype? Explain its types	12M	1	2
Q.2(A)	Justify the use of lambda functions	12M	2	5
	OR			
Q.2(B)	Discuss about self-calling functions with suitable examples	12M	2	2
Q.3(A)	Apply the split function uses in variable applications	12M	3	3
	OR			
Q.3(B)	Describe about array operations with suitable examples	12M	3	2
Q.4(A)	Explain set comprehension through examples	12M	4	2
	OR			
Q.4(B)	Discuss the various file I/O functions with examples	12M	4	2
Q.5(A)	Apply exception to validate user inputs	12M	5	3
	OR			
Q.5(B)	Illustrate the SQL-DML operations in python	12M	5	2

*** END ***

MADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MADANAPALLE
(UGC-AUTONOMOUS INSTITUTION)

MCA I Year I Semester (R24) Supplementary End Semester Examinations, December - 2025

OPERATING SYSTEMS**Time: 3Hrs****Max Marks: 60**

Attempt all the questions. All parts of the question must be answered in one place only.
In Q.No 1 to 5 answer either A or B only

Q.No	Question	Marks	CO	BL
Q.1(A)	What is Operating System and explain any four types of Operating Systems with architecture diagram.	12M	1	2
OR				
Q.1(B)	Analyze different process scheduling techniques and their impact on system performance.	12M	1	4
Q.2(A)	Describe Deadlocks Prevention, Deadlock Avoidance and Deadlock Detection in an operating system environment.	12M	2	2
OR				
Q.2(B)	Discuss different CPU scheduling algorithms with their advantages and disadvantages.	12M	2	4
Q.3(A)	Discuss the concept of virtual memory and demand paging.	12M	3	4
OR				
Q.3(B)	Illustrate the Copy-on-Write mechanism in an operating system to optimize memory usage.	12M	3	3
Q.4(A)	Analyze various disk scheduling algorithms by comparing their efficiency, advantages, and drawbacks with suitable examples	12M	4	4
OR				
Q.4(B)	Discuss RAID structure and its levels with their advantages.	12M	4	4
Q.5(A)	Differentiate RTOS and Distributed Operating System with real world examples.	12M	5	4
OR				
Q.5(B)	Analyze different types of Mobile Operating Systems by comparing their architecture, features, and performance.	12M	5	4

***** END*****